Lise matematiği etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Lise matematiği etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

Dörtgen Formülleri Nelerdir? Dörtgen Soruları Nasıl Çözülür? Dörtgen Çeşitleri ve Özellikleri Nelerdir?

Herhangi üçü doğrusal olmayan dört noktanın dört doğru parçasıyla birleştirilmesinden elde dilen çokgene DÖRTGEN denir.

A,B,C,D noktalarına dörtgenin köşeleri [AB],[BC],[CD],[DA] doğru parçalarına ise kenarları denir.

ABCD dörtgenin kenar uzunluklarını [AB]=a , [BC]=b , [CD]=c , [DA]=d [AC] köşegen uzunluğunu e , [BD] köşegen uzunluğunu ise f ile göstereceğiz.(Şek.1)

*Dörtgenin iç açılarının ölçüleri toplamı 3600’dir.
m(A)+m(B)+m(C)+m(D)=3600
*Dörtgenin dış açılarının ölçüleri toplamı 3600’dir.
m(A’)+m(B’)+m(C’)+m(D’)=3600
*Bir dörtgenin aynı kenara bitişik iki açının açıortayları arasındaki açının ölçüsü diğer iki açının ölçüleri toplamının yarısıdır. X= ‘dir. (Şek.2)
*Bir dörtgenin karşılıklı iki açısının açıortayları arasındaki açılardan küçüğün ölçüsü, diğer iki açının ölçüleri farkının yarısıdır. X= (Şek.3)


*Herhangi bir ABCD dörtgeninde [AC] [DB]= {P} , [AC]=e [BD]=f ise
A(ABCD)= e. f. sin (Şek.4)
*Herhangi bir ABCD dörtgeninde S1.S3 = S2.S4 tür. (Şek.5)
*Bir dörtgenin kenarlarının orta noktaları bir ın köşeleridir. (Şek.6)

*Bir dörtgende karşılıklı iki açı dik ise, bu açıların bitişik kenar uzunluklarının kareleri toplamı birbirine eşittir.(Şek.7)
İspat: ADC üçgeninde [AC]2 =[DA]2 + [DC]2
ABC üçgeninde [AC]2 =[AB]2 + [BC]2
Buradan;
[AB]2 + [BC]2 = [DC]2 + [DA]2 elde edilir.
*Köşegenleri birbirine dik olan bir dörtgende karşılıklı kenar uzunluklarının kareleri toplamı birbirine eşittir.(Şek.8)
İspat: AOB üçgeninde [AB]2 = [AO]2 + [BO]2 DOC üçgeninde [DC]2 = [DO]2 + [OC]2 taraf tarafa toplanırsa
[AB]2 + [DC]2 = [AO]2 + [DO]2 +[BO]2 +[OC]2 (1)
AOD üçgeninde [AD]2 = [AO]2 + [DO]2 BOC üçgeninde [BC]2 = [BO]2 + [OC]2 taraf tarafa toplarsak
[AD]2 + [BC]2 = [AO]2 +[DO]2 + [BO]2 + [OC]2 (2)
(1) ve (2) eşitliklerinin sağ taraflarının eşit olduğunu görüyoruz. Öyleyse;
[AB]2 + [CD]2 = [BC]2 + [DA]2
*Bir dörtgende karşılıklı iki kenar ile köşegenlerin orta noktaları bir paralel kenarın köşeleridir. Bu paralel kenarın çevresi, dörtgenin diğer iki kenar uzunluğunun toplamı kadardır. (Şek.9)
İspat: E,F,G,H sırasıyla [AB],[BD], [CD] ve [AC]’nin orta noktalarıdır.
CAB üçgeninde EH // BC CDB üçgeninde GF // BC ise EF // GF (1)
DAC üçgeninde GH // DA DAB üçgeninde EF // DA ise GH // EF (2)
(1) ve (2)’den EFGH paralel kenar olur. Bu paralel kenarın çevresi de [AD] + [BC] ‘dir.
*ABCD dışbükey dörtgeninin iç bölgesindeki herhangi bir nokta P ise (Köşegenlerin kesim noktası dışında);
[PA] + [PB] + [PC] + [PD] > [AC] + [BD] ‘dir. (Şek.10)
İspat: PAC üçgeninde [PA] + [PC] > [AC] ve PBD üçgeninde [PB] + [PD] > [BD] dir. Taraf tarafa toplarsak
[PA] + [PB] + [PC] + [PD] > [AC] + [BD] bulunur.
Not: P noktası köşegenlerin kesim noktası ise bu durumda [PA] + [PB] + [PC] + [PD] = [AC] + [BD] olur.
*ABCD dörtgeninin [AC] ve [BD] köşegenlerinin orta noktaları E ve F, [EF]= x ,[BD]= f, [AC]= e ise
‘dir. (Şek.11)
İspat: A ile F’ yi; F ile de C’ yi birleştirelim.[AF]= m,[FC]= n olsun.
ABD üçgeninde kenarortay teoremine göre (1)
DBC üçgeninde kenarortay teoremine göre (2)
(1) ve (2)’den
2 (m2+n2)=a2+b2+c2+d2-f2 (3)
FAC üçgeninde kenarortay teoremine göre ’dir. Buradan 4×2 = 2(m2+n2) -e2 yazılabilir.
2(m2+n2) yerine (3)’de bulduğumuz eşitlikle yazarsak 4×2 = a2+b2+c2+d2-f2-e2 olur.
Buradan dabulunur.

Eşkenar Dörtgenin Özellikleri
Her eşkenar dörtgende köşeleri birleştiren iki çift paralel kenar ve iki köşegen vardır. Eşleşik (benzer) üçgenler kullanılarak, eşkenar dörtgenin bu köşegenlerin her birine göre simetrik olduğu ispatlanabilir. Dolayısıyla her eşkenar dörtgen aşağıdaki özellikleri taşır:
Karşı açılar eşittir.
Köşegenler birbirine diktir; yani eşkenar dörtgen bir dikköşegenli dörtgendir.
Köşegenler açıortaydır.
İlk özellik, her eşkenar dörtgenin bir paralelkenar olduğu anlamına gelir. Eşkenar dörtgen dolayısıyla bir paralel kenarın tüm özelliklerine sahiptir: örneğin, karşı kenarlar paraleldir; bitişik açılar bütünlerdir; iki köşegen birbirini ikiye böler; orta noktadan geçen herhangi bir doğru, alanı ikiye böler; ve kenar uzunluklarının karelerinin toplamı köşegenlerin karelerinin toplamına eşittir (yani, ortak kenar uzunluğuna a ve köşegen uzunluklarına d1 ve d2 denirse, 4a2 = d12 + d22).
Her paralelkenar bir eşkenar dörtgen değildir ama paralel köşegenleri olan her paralelkenar (ikinci özellik) bir eşkenar paralelkenardır. Genelde, (biri bir simetri ekseni olan) birbirine dik köşegenli her dörtgen bir uçurtmadır. Her eşkenar dörtgen bir uçurtmadır ve hem uçurtma hem paralelkenar olan bir dörtgen bir eşkenar dörtgendir.
Eşkenar dörtgen bir teğetsel dörtgendir.Yani, dört kenarına da teğet olan bir dış teğet çember vardır.
Eşkenar Dörtgen Formülleri
*Paralel kenarın tüm özelliklerini taşır.
*Köşegenler birbirinin dik olarak ortalar. [AC] ^ [BD] [AO]=[OC] ve [BO]=[OD]’dir.
*Köşegen uzunlukları [AC]=e [BD]=f ise A(ABCD)= dir.
*Köşegenler açıortaydır.
*e2+f2 = 4a2 dir.
*Eşkenar dörtgenin alanı yükseklikle bir kenarın çarpımıdır. (Şek.23)
*Çevresi 4a’dır.
*Eşkenar dörtgenin iç bölgesinde alınan bir noktanın tüm kenarlar olan uzaklıkları toplamı 2h kadardır.(Şek.24)
[KE]+[KG]+[KF]+[KH]= 2h ([HF]=[GE]=h )
Read more

Lise Matematiği Bağıntı - Kartezyen Çarpımı Konu Anlatımı Çözümlü Sorulular

BAĞINTI-KARTEZYEN ÇARPIM

Sıralı İkili

Herhangi iki x ve y elemanını (x,y) biçiminde yazmaya sıralı ikili yada ikili denir.a’ya sıralı ikilinin birinci bileşeni, b’ye sıralı ikilinin ikinci bileşeni denir.

(a,b) ≠ (b,a) Yer değiştiğinde eşit olmaz.

(a,b)=(c,d) Burada a=c ve b=d olur.

Örnek: (2x-1,3+y)=(5+x,-7-y) ise x+y=?

2x-1=5+x buradan x=6 olur.

3+y=-7-y buradan 2y=-10 yani y= -5 olur.

Kartezyen Çarpım

A ve B kümeleri için, birinci bileşen A’dan, ikinci bileşen B’den alınarak oluşturulacak tüm sıralı ikililerin kümesine A ve B kümelerinin kartezyen çarpımı yani kartezyen çarpım denir.AxB ile gösterilir.

AxB={(x,y)│xϵA ˄ yϵB}

Örnek: A={1,2,3} B={a,b}

AxB={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

Kartezyen Çarpımın Eleman Sayısı

s(AxB)= s(BxA)= s(A). s(B)

s(AxA)= s(A). s(A)

Örnek: A={1,2} B={a,b}

AxB={(1,a),(1,b),(2,a),(2,b)}

s(AxB)=s(A). s(B)=2.2=4

Örnek: A={1,2,3}

AxB={(1,1),(1,2),(1,3), (2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

s(AxA)= s(A). s(A)=3.3=9

Kartezyen Çarpımın Özellikleri

1)AxB≠BxA değişme özelliği yok.

2) (AxB)xC=Ax(BxC)= AxBxC birleşme özelliği var.

3) Ax(BUC)= (AxB)U(AxC) U işlemi üzerine dağılma özelliği var.

4) Ax(B∩C)= (AxB)∩(AxC) ∩ işlemi üzerine dağılma özelliği var.

Bağıntı

A ve B herhangi iki küme olsun.AxB nin her β alt kümesine A’dan B’ye bağıntı denir. A’dan B’ye bağıntı sayısı, AxB nin alt küme sayısına eşittir.

s(A)=n s(B)=m ise s(AxB)= n.m

O zaman A’dan B’ye yazılabilecek tüm bağıntıların sayısı 2n.m dir.

Örnek: A={1,2} B={a,b}

AxB={(1,a),(1,b),(2,a),(2,b)}

s(AxB)=s(A). s(B)=2.2=4

Kartezyen çarpımın her alt kümesi A’dan B’ye bir bağıntıdır. Bu bağıntılardan bazıları şöyledir.

β1={(1,a),(2,a)}

β2={(1,a),(2,a),(1,b)}

β3={(2,b)}

Bu şekilde AxB’nin 24=16 tane alt kümesi vardır.Bunlardan herbiri,

A’dan B’ye bir bağıntıdır.Yani 16 tane bağıntı yazılır.

Bağıntının Tersi

β bağıntısındaki elamanların bileşenlerinin yerleri değiştirilerek elde edilen bağıntıya β bağıntısının tersi denir. β-1 ile

gösterilir. β bağıntısı A’dan B’ye tanımlanan bağıntı iken, β-1

bağıntısı B’den A’ya tanımlanan bağıntıdır.

Örnek: A={3,5,7,8} kümesinde

β={(3,5),(7,8),(5,5)} bağıntısın tersi

β-1={(5,3),(8,7),(5,5)}

Yansıma Özelliği

β bağıntısı A kümesinde tanımlı bir bağıntı olsun.

Her xϵA için (x,x)ϵ β ise β bağıntısı yansıyandır.β bağıntısının yansıma özelliği vardır yada yansıyan bağıntıdır denir.

Örnek: A={a,b,c} kümesi için

β1={(a,a),(a,b),(b,b),(b,c),(c,c)} yansıma özelliği vardır.

β2={(a,a),(a,c),(c,a),(c,c)} yansıma özelliği yoktur.

Simetri Özelliği

β bağıntısı A kümesinde tanımlı bir bağıntı olsun.

Her (x,y)ϵ β iken (y,x)ϵ β oluyorsa β bağıntısı simetriktir.β bağıntısının simetri özelliği vardır yada simetrik bağıntıdır denir.

Örnek: A={a,b,c,d} kümesi için

β1={(a,a),(a,c),(c,a)} simetriktir.

β2={(a,d),(b,c),(c,b)} simetrik değildir.

β simetrik bağıntı ise β= β-1

β bağıntısının grafiği ile β-1 bağıntısının grafiği y=x doğrusuna

göre simetriktir.

Ters Simetri Özelliği

β bağıntısı A kümesinde tanımlı bir bağıntı olsun.

x≠y için her (x,y)ϵ β iken (y,x) eleman değil β oluyorsa β bağıntısı ters simetriktir.β bağıntısının ters simetri özelliği vardır yada ters simetrik bağıntıdır denir.Bağıntıda (x,x) gibi aynı bileşenleri olan ikililer varsa bunlar ters simetri özelliğini bozmaz.

Örnek: A={a,b,c,d} kümesi için

β1={(a,c),(b,b),(c,d)} ters simetriktir.

β2={(b,c),(a,a),(c,b),(a,d)} ters simetrik değildir.

Geçişme Özelliği

β bağıntısı A kümesinde tanımlı bir bağıntı olsun.

Her (x,y)ϵ β ve (y,z)ϵ β iken (x,z)ϵ β oluyorsa β bağıntısı geçişkendir.β bağıntısının geçişme özelliği vardır yada geçişken bağıntıdır denir.

Bir tek ikiliden oluşan bağıntı daima geçişkendir.

Örnek: A={a,b,c,d} kümesi için

β1={(a,b),(b,c),(a,c)(c,a)} geçişken değildir.

β2={(a,d),(d,a),(a,a)} geçişkendir.

Read more

Lise Matematiği Fonksiyonlar Konu Anlatım ve Çözümlü Sorular

FONKSİYONLAR

A ve B boş olmayan iki küme olsun. A’nın her elemanını B’nin yalnız bir elemanına eşleyen A’dan B’ye bir f bağıntısına, A’dan B’ye bir fonksiyon denir.

Fonksiyon olması için;

1) A’nın her elamanı B’ye gidecek.

2) A kümesinde açıkta eleman kalmayacak.

3) A’nın herhangi bir elamanı B’ye iki defa gitmeyecek.

4) B’de açıkta elaman kalabilir.

Örnek: A={ali,ayşe,fatma} B={sarma,makarna,pilav,yahni}

A’dan B’ye tanımlanan bağıntılardan hangileri fonksiyondur?

a) f={(ali,sarma),(ayşe,makarna),(fatma,yahni)}

b) g={(ali,pilav),(ayşe,sarma),(fatma,yahni),(fatma,makarna)}

c) h={(ayşe,sarma),(fatma,pilav)}

Yukarıdakilerden h bağıntısı fonksiyon değildir çünkü ali açıkta kalmıştır.

g bağıntısı fonksiyon değildir çünkü fatma iki çeşit yemek almıştır.

f bağıntısı fonksiyondur.A’nın her elamanı B’den bir çeşit yemek seçmiştir.

Buradaki kişilerin kümesine fonksiyonun tanım kümesi,yemeklerin kümesine fonksiyonun değer kümesi,değer kümesinde bulunan kişilerin yediği yemeklerin kümesine de fonksiyonun görüntü kümesi denir.

f: A---->B biçiminde yada f: x---->y biçiminde gösterilir.

y=f(x) yazılır. xϵA, y=f(x)ϵB olur.

Fonksiyonun görüntü kümesi f(A) ile gösterilir.

Tanım kümesi: ali,ayşe,fatma

Değer kümesi: sarma,makarna,pilav,yahni

Görüntü kümesi: sarma,makarna,yahni

Örnek: A={a,b,c} B={1,2,3,4,5,6} ise

Fonksiyonun elemanlarının liste yöntemiyle gösterimi

f={(a,2),(b,4),(c,4)}

Fonksiyonun görüntü kümesi

f(A)={2,4}

Örnek: A={-1,0,2,4}, f: A---->B, f(x) = x2-2 veriliyor. f ve f(A) kümesini

bulalım.

Tanım kümesindeki elemanlara x deriz.

x=-1 için f(-1)=(-1)2-2=-1

x=0 için f(0)=(0)2-2=-2

x=2 için f(2)=(2)2-2=2

x=4 için f(4)=(4)2-2=14

f={(-1,-1),(0,-2),(2,2),(4,14)}

f(A)={-1,-2,2,14}

Örnek: f(x+1)=3+f(x) ve f(1)=4 ise f(3) kaçtır?

f(x+1)=3+f(x) eşitliğinde

x=1 yazalım.

f(2)=3+f(1)

f(2)=3+4=7

x=2 yazalım.

f(3)=3+f(2)

f(3)=3+7=10

Örnek: f: R---->R, f(x) = 3x+5 fonksiyonu veriliyor. f(2x+3) fonksiyonunun f(x) cinsinden eşiti nedir?

f(x) = 3x+5

f(2x+3) = 3(2x+3)+5

f(2x+3) = 6x+14

f(2x+3) = 2(3x+5)+4

f(2x+3) = 2f(x)+4

Örnek: f: R---->R, f(3x+2) = x2-x+2 olduğuna göre f(5)+f(2) toplamı

kaçtır?

f(3x+2) = x2-x+2 fonksiyonun içlerini sırasıyla 5 ve 2’ye eşitleyeceğiz.

3x+2=5 buradan x=1 olur.

x=1 için f(5)=1-1+2=2

3x+2=2 buradan x=0 olur.

x=0 için f(2)=0-0+2=2

f(5)+f(2)=2+2=4

Düşey Doğru Testi

Bir grafikte tanım kümesinden y eksenine paralel çizilen doğrular,grafiği bir noktada kesiyor ise grafik, fonksiyon grafiğidir.Bu işleme düşey doğru testi denir.


Fonksiyon Çeşitleri ve Türleri

Bire-Bir Fonksiyon

f: A---->B fonksiyonu için, A’nın farklı elemanlarını B’nin farklı elamanlarına eşleyen fonksiyona bire-bir fonksiyon denir. (1-1 şeklinde de gösterilir.)

Yani farklı elamanların görüntüleri de farklı olmalıdır.

Örnek: Hangisi bire-bir fonksiyondur?

A={0,1,2,3} B={0,1,2,3,4,5}

f={(0,0),(1,2),(2,4),(3,3)}

g={(0,1),(1,1),(2,3),(3,5)}

g fonksiyonunda 0 ve 1’in görüntüleri de 1’dir.Bire-bir olması için görüntülerin farklı olması gerekir.Yani bire-bir değildir.

f fonksiyonu bire-bir’dir.

Yatay Doğru Testi

Bir fonksiyonun grafiği verildiğinde grafiği kesecek şakilde yatay eksene paralel doğrular çizilir.Çizilen bu doğrular grafiği bir noktada kesiyorsa fonksiyon bire-bir (1-1) fonksiyondur ya da bire birdir denir.Bu işleme yatay doğru testi denir.

Örten Fonksiyon

f: A---->B fonksiyonu için,görüntü kümesi değer kümesine eşit olan fonksiyona örten fonksiyon denir.Yani B’nin hiçbir elemanı açıkta kalmayacak.

Hem bire-bir hem de örten olan fonksiyona 1-1 örten fonksiyon denir.

Örnek: Hangisi örten fonksiyondur?

A={0,1,2,3} B={0,1,2}

f={(0,0),(1,2),(2,1),(3,2)}

g={(0,1),(1,1),(2,2),(3,2)}

g fonksiyonunda 0’a gidilmemiştir.Yani 0 açıkta kalmıştır. Yani örten değildir.

f fonksiyonu örten’dir.

Örnek: Sınıfımızdaki öğrencilerin kümesine tanım kümesi,sınıfımızdaki öğrencilerin okul numaralarının kümesine de değer kümesi diyelim.

Görüntü kümesini oluştururken her öğrenci kendi numarasıyla eşleşeceğine göre bu fonksiyon hem 1-1, hem de örten fonksiyondur.

İçine Fonksiyon

f: A---->B fonksiyonu için,görüntü kümesi değer kümesine eşit olmayan fonksiyona içine fonksiyon denir.Yani örten olmayan fonksiyondur.

Örnek: Hangisi içine fonksiyondur?

A={0,1,2,3} B={0,1,2}

f={(0,0),(1,2),(2,1),(3,2)}

g={(0,1),(1,1),(2,2),(3,2)}

g fonksiyonunda 0’a gidilmemiştir.Yani 0 açıkta kalmıştır. g fonksiyonu içine fonksiyondur. f fonksiyonu içine fonksiyon değildir.

Birim Fonksiyon

A’dan A’ya bir fonksiyon için, her eleman kendisiyle eşleşiyorsa, bu fonksiyona birim fonksiyon denir.

I: A---->A , I(x)=x biçiminde ifade edilir.

Örnek: I: A---->A , I(x)=x

A={1,2,3} B={1,2,3}

f={(1,1),(2,2),(3,3)} birim fonksiyondur.

Sabit Fonksiyon

Tanım kümesinin her elamanının görüntüsü aynı olan,yada görüntü kümesi bir elemanlı olan fonksiyona,sabit fonksiyon denir.

f(x)=c (cϵR)

Örnek: x---->y, f(x)=4

A={1,2,3} B={3,4,5}

f={(1,4),(2,4),(3,4)} sabit fonksiyondur.

Doğrusal Fonksiyon

Matematikte grafiği doğru olan fonksiyona doğrusal fonksiyon denir.

f: R---->R f(x)=mx+n olarak ifade edilir.

Örnek: f: R---->R f(x)=mx+n

f(x)=x-2

g(x)=-4x+1

h(x)=5x

k(x)=x2

Yukarıdakilerin hepsi doğrusal fonksiyondur.


Fonksiyon Sayısı

A={a,b,c} , B={1,2,3,4,5} kümeleri veriliyor.

a) A’dan B’ye tanımlanan tüm fonksiyonların sayısı nedir?

s(B)s(A) formülüyle bulunur.

s(A)=3

s(B)=5

s(B)s(A) = 53 = 5.5.5 = 125’tir.

b) A’dan B’ye tanımlanan bire-bir fonksiyonların sayısı nedir?

s(A)=m, s(B)=n

P(n,m)=n!/(n-m)! Formülüyle bulunur.

P(5,3)=5!/(5-3)!=5!/2!=120/2=60’tır.

c) A’dan B’ye tanımlanan sabit fonksiyonların sayısı nedir?

B’nin eleman sayısıdır.Sabit fonksiyon sayısı 5’tir.

d) A’dan B’ye tanımlanan bire-bir örten fonksiyonların sayısı nedir?

s(A)=m ise A’dan A’ya tanımlanan bire-bir örten fonksiyon sayısı P(m,m)=m!

P(m,m)=m!= P(3,3)=3!=1.2.3=6’dır.
Read more